[


www.aiplab.com
〜AIP異業種学習同好会(AIP同好会)ホームページ

(2017年11月9日現在) Enter

 supported by 特定非営利活動法人(NPO法人)AIPSコンソーシアム


〜 

代表  萩原良昭 ( hagihara-yoshiaki@aiplab.com )

AIPS = Artificial Intelligent Partner System

*****************************************

   AIPコンソーシアム(NPO)法人の紹介
*****************************************
  人工知能パートナーシステム(AIPS)実現の為に、
    AIPSの基礎技術の発展と教育推進活動に
         奉仕するNPO法人です。

*****************************************


          代表  萩原良昭    

      hagihara-yoshiaki@aiplab.com


*****************************************



***************************************

AIPSに関する技術解説書を1冊紹介します

***************************************


**********************************************

書名  人工知能パートナー(AIPS)を支える   

   デジタル回路の世界

**********************************************  

ISBN 978-4-88359-339-2 C3055

本体 9000円+税 

B5サイズ 上製 475ページ (ハードカバー)


***************************************

この本の購入に関しては、
下記の出版社のホームページを参照の上、
出版社に直接ご連絡いただき、
ご購入ください。

 書籍の出版社の紹介     青山社 

http://www.seizansha.co.jp/company.html


***************************************
   この本の概要説明です
***************************************

未来の人間の社会においては、いたるところで、人間にやさしい、
人工知能パートナーシステム( AIPS = Artificial Intelligent Partner
System)とも言える人間支援システムが出現すると期待しています。

たとえば、AIPS搭載の自動走行車や老人介護システム、人間型
歩行ロボット、ロボット・ハウス等です。

このAIPSを支えるのが、コンピュータとその通信技術です。
また、その基礎となるのが、基礎情報数学、数値計算法、
電子回路、知能ロボット工学などです。

そこにはさらに、 ハードとソフトの両面があります。

従って、ハードとソフトの技術が連携して、はじめて、AIPS搭載の
人間支援システムの実現が可能となります。

そこでAIPSを志す人は、宮本武蔵の様に、自己の腕(技術力)を
二刀流で磨いていただきたいところです。




**************************************************************
   この本のAPPENDIXです
**************************************************************


***************************************

   人工知能パートナー(AIPS)を支える   

   デジタル回路の世界

***************************************  





************************************************************
まず、各項目を参照して、はじめに Software の環境を構築してみましょう
************************************************************

0-1-1 Hello Digital Circuit World !

0-1-2 P進法数をQ進法数に変換する。

0-1-3 { x(t), y(t) } の値を計算し、そのグラフを描く ( for t=a to t=b )

0-1-4 N次方程式を解く

0-1-5 NxN の行列式を解く

0-1-6 √2 を小数点Nけた迄計算する

*********************************************************



*********************************************
   この本の目次です
*********************************************


**************************************************************************

各項目ごとに、本の中で図を用意して、内容を詳細にわかりやすく説明しています。

    本を購入された方は、 著者に直接、下記MAILにて、ご連絡ください。

        
hagihara-yoshiaki@aiplab.com

項目ごとに、演習問題とその解答例などの資料について、ご案内MAILをさしあげます。

*************************************************************************

以下に、本書の各セクションの補足資料(Appendix)を掲示します。

特に各セクション解説内容の補足と、その詳細な計算手順(algorithm)や

そのC言語のsource programと計算結果の例などを掲示します。

まだ工事中ですが、これからどんどん掲示拡充していきます。

********************************************************

      
第1章 デジタル回路の関数モデル

********************************************************


******************************************


1-1-1 ...............デジタル回路を取り巻く仲間たち

1-1-2 ______ 1 bit デジタル記憶回路 Oya( ) 回路の定義

1-1-3 ______ 2つの数 0 と 1 の値しかとらない2価変数ベクトルの定義

1-1-4 ______ 2 bit デジタル記憶回路 Sosofubo( ) 回路の定義

1-1-5 ______ y=f(x)=2**x ( 2の x 乗 )を計算するデジタル回路 2noXjo( )回路

1-1-6 ......... 3 bitデジタル記憶回路 Sosofubo( )回路

1-1-7 .............4 bitデジタル記憶回路 FlagSosofubo( )回路

1-1-8 .................. n bit レジスター回路

1-1-9 ................... read/write/clock 制御信号について
 
1-1-10 ............... 同時読み書き同時実行可能な記憶回路について

******************************************

1-2-1 ______ 大きな数のかけ算回路 BigNumber( ) の定義

1-2-2 BigNumber( )回路の計算手順(algorithm)の説明

1-2-3 大きな数のけた数を概算するには?

1-2-4 10進法数を2進法数に変換する 10to2( )回路

1-2-5 10to2( )回路の計算例

1-2-6 2進法数のかけ算回路 XXYYtoZZ( )回路の定義

1-2-7 AND( )回路の定義

1-2-8 VectorAND( )回路の定義

1-2-9 いろいろな2入力1出力Gate回路の定義

1-2-10 NAND( )回路

1-2-11 OR( ) 回路

1-2-12 NOR( ) 回路

1-2-13 EXOR( ) 回路

1-2-14 EXNOR( ) 回路

1-2-15 inverter回路

1-2-16 HalfAdder( ) 回路

1-2-17 FullAdder( )回路の定義

1-2-18 √2の値を10進法小数で表示する演算関数 sqrt2S10( ) の定義

1-2-19 √2の値を2進法小数で表示する演算関数 sqrt2S2( ) の定義

******************************************

1-3-1 人間語から機械語への変換回路装置について

1-3-2 KeyBoard256( )回路について

1-3-3 Encoder256to8( ) 回路

1-3-4 Encoder256to8( )回路の演算Algorithm

1-3-5 10進法数の整数ベクトルを2進法数に変換する10to2( )回路

1-3-6 入力data蓄積回路 Accm( )について

1-3-7 残る検討項目

1-3-8 パソコンのビット幅

1-3-9 実数や複素数を整数値に投影するとは?

1-3-10 デジタルとアナログの違いは?

1-3-11 A/D変換器とは?

1-3-12 Overflowの定義

******************************************

1-4-1 デジタル回路と関係が深い技術分野と学術組織

1-4-2 IEEE574形式

1-4-3 単精度32 bitの2値表示形式の例

1-4-4 IEEE754形式で表記できる数の値

1-4-5 半精度のデジタル数

1-4-6 単精度のデジタル数

1-4-7 後段処理回路

******************************************

1-5-1 デジタル回路を演算関数 f( ) として表記する

1-5-2 多重演算関数回路の入出力表記例

1-5-3 1ビット情報の意味の解釈はいろいろある

1-5-4 電源と接地

1-5-5 存在するという概念

1-5-6 デジタル回路をとりまく世界

1-5-7 信号線はベクトル情報

1-5-8 複数個の信号線のベクトル情報

1-5-9 機能が名前と外形と中身も決める

1-5-10 デジタル回路の名称

1-5-11 多様性と豊かさについて

1-5-12 異なる電源電圧を使っている発信者回路と受信者回路

1-5-13 複数の発信者から信号受信する配線網の例

1-5-14 自分の中の回路部品の中にも自分がいる回路

1-5-15 指数関数を計算する演算回路

1-5-16 z[ ]=f(k)x[ ]y[ ] を計算する回路

1-5-17 Remember?デジタル回路で取り扱う数はデジタル数

1-5-18 複数個のdataを記憶保存してくれる記憶回路

1-5-19 読み出し専用記憶回路

1-5-20 1 bit 情報を記憶する回路 RAM1bit( ) 回路

1-5-21 128 bit Register とは?

******************************************

1-6-1 1970年はデジタル回路誕生の時だった

1-6-2 128 bit 比較回路

1-6-3 Latch型128 bit Register回路 Reg128( )回路の全体図

1-6-4 同時読み書き可能なRegRW128 ( ) 回路

1-6-5 Latch回路を使った128 bit Shift Register

1-6-6 暗号の自動解読装置とは?

1-6-7 情報伝達の使命

******************************************



*****************************************************

 
第2章 デジタル回路の基礎数学
   
*****************************************************


******************************************

2-1-1 数という集合体について

2-1-2 デジタル回路は基本的にベクトル演算回路である。

2-1-3 ベクトルの内積の定義

2-1-4 ベクトルの外積の定義

2-1-5 テンソル演算回路 TNSR( )回路の定義

2-1-6 行列式A[ ][ ]とベクトルX[ ]のかけ算回路TNSR01( )回路の定義

2-1-7 行列式A[ ][ ]と行列式X[ ][ ]のかけ算回路TNSR02( )回路の定義

******************************************

2-2-1 三角関数の定義

2-2-2 ピタゴラスの定理

2-2-3 三角関数の基本的な性質

2-2-4 特別な三角形の辺の値

2-2-5 三角形の面積

2-2-6 余弦定理

2-2-7 正弦定理

2-2-8 複素数と複素平面の点は1対1に対応する

2-2-9 2つの複素数のかけ算は複素数平面での回転と1対1に対応する。

2-2-10 三角関数の加法定理

2-2-11 x**n =1 の根

2-2-12 2次方程式の一般解

2-2-13 W*W = z = a + j b の解

2-2-14 複素数の逆数

2-2-15 複素数のわり算

2-2-16 2元1次連立方程式の解

2-2-17 2元1次連立方程式の解を 2 x 2 の行列式で表記する

2-2-18 3次方程式を一般解

2-2-19 4次方程式の一般解法

2-2-20 行列式を使った虚数と複素数の定義

2-2-21 2乗すると単位行列になる行列式

2-2-22 回転行列

2-2-23 3次元ベクトルの極座標系

******************************************

2-3-1 2点 P(a,b) と Q(c,d) を通る直線の式 y = Ax + B

2-3-2 y=f(x) 上の2点 PとQ を通る直線の式 y = Ax + B

2-3-3 曲線上の任意の点 P での接線の式

2-3-4 Taylor 級数 

2-3-5 外気にさらされた耳の温度の変化はRC放電特性と同じ形式となる

2-3-6 指数関数 exp(x) の性質 

2-3-7 三角関数が指数関数と兄弟であるとは?

******************************************



********************************************************
 
 
第3章 デジタル回路の基礎物理

********************************************************


******************************************

3-1-1 デジタル回路の主役は電子(electron)


3-1-2 _____ Filed Tensor F[ ][ ]と Maxwell の方程式

     <特殊相対性理論の解説資料です>

     
ベクトル E[ ] や 行列式 F[ ][ ] の応用例として

       初歩的な特殊相対性理論を例にして解説しています。

       中学程度の数学の基礎からでも取りかかりが可能です。



3-1-3 電子のスピン(自転)

3-1-4 MKS単位

3-1-5 Compton 効果

3-1-6 電子の固有物理量

3-1-7 デジタル回路の主役の電子(electron) が従う物理法則とは?

3-1-8 電子は電位(electronic potential)を感じる

******************************************

3-2-1 仕事とは?

3-2-2 運動エネルギーは速度の2乗に比例する

3-2-3 ロケットの脱出速度と地球の大きさの関係

3-2-4 なぜパラシュートはゆっくり落下するのか?

3-2-5 抵抗率と伝導率の関係


******************************************

3-3-1 器に入った水のモデル

3-3-2 金属に光を照射すると電子が飛び出す

3-3-3 Band Gap とは?

3-3-4 電流の基本単位アンペア( Ampere )の定義と誘磁率

******************************************

3-4-1 抵抗体と抵抗率

3-4-2 移動度μの定義(透磁率のμではない)

3-4-3 金属の中の電子密度 n のお話

******************************************

3-5-1 コンデンサーとは?

3-5-2 コンデンサーのRC充放電問題

3-5-3 容量Cを使った電気回路の仲間たち

******************************************

3-6-1 デジタル回路の電力の定義

3-6-2 家庭にはどのようにして電力が送られてきているか?

3-6-3 2本の交流電圧の送電線にかかる力と電流の関係は?

******************************************

3-7-1 Radarの話

3-7-2 二極真空管に光を照射するとどうなるか?

3-7-3 二極真空管の整流特性について

3-7-4 三極真空管とは?

3-7-5 3つの金属板による不揮発性記憶動作

******************************************



********************************************************

 
第4章 デジタル回路の基本部品
********************************************************

●第4章の基本理解度チェック問題(Q4−1)
  
       
       第4章基本理解度チック問題の解答例(QA4−1)
 

********************************************************

******************************************

4-1-1 半導体とは?

4-1-2 N 型半導体とは?

4-1-3 N 型シリコン結晶の中の電子の物理モデル

4-1-4 P 型シリコン半導体とは?

4-1-5 P 型シリコン半導体結晶の中の電子の物理モデル

4-1-6 箱に入ったボールの物理モデル

4-1-7 N 型シリコン半導体に光を照射すると実効抵抗値が下がる

******************************************

4-2-1 diodeとは?

4-2-2 逆バイアスされたPN接合の物理モデル

4-2-3 空乏層とは?

4-2-4 順方向バイアスのdiodeで電流が大量に流れる理由

4-2-5 順方向バイアス(bias)のdiodeに光を照射すると電流が減少する

4-2-6 逆方向バイアス(bias)のdiodeに光を照射した場合

4-2-7 太陽電池とは?

4-2-8 固体撮像素子(solid state image sensor)とは?

4-2-9 CCD imager の登場

4-2-10 P+N-P受光構造

4-2-11 MOS imagerの実用化時代の到来

4-2-12 ロボットの網膜に位置検出素子PSDを使う

4-2-13 位置検出素子PSDの構造とその動作原理

******************************************

4-3-1 transistorの誕生

4-3-2 NPN bipolar transistor の動作モデル

4-3-3 NPN bipolar transistor のいろいろな物理定数

4-3-4 負荷抵抗型電圧増幅回路 BipAmp( )

4-3-5 電圧増幅回路 BipAmp( ) の電圧利得

4-3-6 究極の電子の目はやはりtransistor だった

4-3-7 固体撮像装置の提案(1975.11.10)

4-3-8 NPN bipolar transistor 型のセンサーの物理モデル

4-3-9 PNP photo transistor の static mode と dynamic mode

4-3-10 HADセンサーの界面物理について

*********************************************************

4-4-1 MOS capacitorとは?

4-4-2 MOSの反転層(strong inversion layer)

4-4-3 MOS transistorの水門モデル

4-4-4 MOS transistorの3つの動作モード(mode)

4-4-5 MOS transitorの飽和領域について

4-4-6 NMOS抵抗負荷型反転回路 invNMOSR( )

4-4-7 NMOS Transistor の電流式を求める

4-4-8 NMOS transistor の断面図とlayout図

4-4-9 NMOS Transistorの IV 特性のまとめ

4-4-10 PMOS Transistorの IV 特性のまとめ

4-4-11 switch 回路について

4-4-12 2x2=4通りの switch 回路の状態について

4-4-13 SwitchN( )回路と SwitchP( )回路の入出力特性

4-4-14 CMOS switch回路 SwitchCN( )回路の動作について

4-4-15 CMOS switch回路 SwitchCP( )回路の動作について

*********************************************************

4-5-1 CMOS inverter

4-5-2 inverter回路の寄生容量によるRC遅延について

4-5-3 CMOS inverter の遅延時間と基本制御 clock の周期

4-5-4 CMOS inverter 回路の coding 例

4-5-5 入力信号側に RC 回路がある inverter 回路 invRC( ) の入出力特性

4-5-6 入力端子と出力端子の容量の両方を考慮したinverter回路

4-5-7 CMOS Schmitt trigger inverter

4-5-8 発振器(Oscillator)回路と記憶(Memory)回路

*********************************************************

4-6-1 2入力デジタル回路 in2GateG( ) 回路の定義

4-6-2 in2GateE( ) 回路、別名 NAND( ) 回路の定義

4-6-3 in2Gate1( ) 回路、別名 AND( ) 回路の定義

4-6-4 in2Gate8( ) 回路、別名 NOR( ) 回路の定義

4-6-5 in2Gate7( ) 回路、別名 OR( ) 回路の定義

4-6-6 in2Gate6( ) 回路、別名 EXOR( ) 回路の定義

4-6-7 in2Gate9 ( )回路、別名 EXNOR( )回路の定義

******************************************

4-7-1 128 bit 加算回路

4-7-2 FAD( ) 回路の定義

4-7-3 引き算回路

4-7-4 加減算回路 ADDSUB( )回路

******************************************

4-8-1 かけ算回路 KAKE( ) の定義

*********************************************************

4-9-1 わり算回路 WARU( ) の定義

4-9-2 わり算回路 WARU( ) の各種制御パルス波形について

*********************************************************

4-10-1 inverter 型の DRAM 回路と SRAM 回路

4-10-2 NAND 型の記憶回路

4-10-3 2NAND 型 1 bit 記憶回路の動作説明

4-10-4 clock 付き 2NAND型 1 bit SRAM 回路の動作説明

4-10-5 大容量記憶回路の構造

4-10-6 センスアンプ(sense amp)回路の正体

*********************************************************

4-11-1 NAND型 R-S Flip Flop 回路の定義

4-11-2 J-K Flip Flop 回路の定義

4-11-3 Toggle Flip Flop 回路の定義

4-11-4 Delay Flip Flop回路の定義

4-11-5 128 bit の2値変数ベクトル A[ ] の一時記憶用 register 回路

4-11-6 128 bit の shift register 回路の定義

4-11-7 2-bit counter 回路の定義

*********************************************************

4-12-1 2x2 の行列式の値をもとめる演算回路 DET2x2( )

4-12-2 逆行列式の演算回路 Gyaku2x2( ) の定義

4-12-3 N x N 行列 A[ ][ ] の逆行列式 B[ ][ ] = invA[ ][ ] を演算する回路

*********************************************************

4-13-1 DAC( digital to analog conversion )変換回路 DAC( ) とは?

4-13-2 オペアンプ( operational amplifier) 回路 OpAmp( )とは?

4-13-3 オペアンプの定義と具体的な構成回路の例

*********************************************************

4-14-1 ADC( analog to digital conversion ) 変換回路とは?

4-14-2 二重積分型 ADC 回路 ADCdoubleInteg( ) 回路の定義

**********************************************************



********************************************************

 
第5章 デジタル回路の応用例(1)
     
********************************************************


5-1-1 通行人カウンター装置の全体図

5-2-1 電源回路装置 Vdd( ) の内部構造

5-3-1 いろいろな Sensor( ) 装置について

5-4-1 アナログ信号を2値 pulse 信号に変換する PulseGen( ) 回路について

5-5-1 入退室判定回路 InOutJudge( )

5-6-1 Output表示装置の設計構築

**************************************************************



********************************************************

 
第6章 デジタル回路の応用例(2)

********************************************************


6-1-1 フーリエ級数

6-2-1 離散フーリエ変換 (DFT) の定義

6-3-1 回転因子行列と複素数平面の関係

6-4-1 基底 N=1の場合

6-4-2 基底 N=2の DFT 変換回路

6-4-3 基底 N=4の DFT 変換回路

6-5-1 偶数奇数2分割手法による DFT 演算回路 DFT4( ) の設計

6-6-1 もう1つの DFT変換 ( digital frequency transformation )

6-6-2 ゼロ時高密度 sampling 手法について

*********************************************************


*
******************************************************************************

              以上がこの本の目次・内容LISTになっています。

    各項目ごとに、本の中で図を用意して、内容を詳細にわかりやすく説明しています。

        本を購入された方は、 著者に直接、下記MAILにて、ご連絡ください。

             hagihara-yoshiaki@aiplab.com

   項目ごとに、演習問題とその解答例などの資料について、ご案内MAILをさしあげます。

*******************************************************************************


**********************************************

書名  人工知能パートナー(AIPS)を支える   

   デジタル回路の世界


***************************************  

ISBN 978-4-88359-339-2 C3055

本体 9000円+税 

B5サイズ 上製 475ページ (ハードカバー)


***************************************

この本の購入に関しては、

下記の出版社のホームページを参照の上、
出版社に直ご連絡いただき、ご購入ください。

 
書籍の出版社の紹介     青山社 

http://www.seizansha.co.jp/company.html



***************************************